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Abstract
Today in the most cases the acoustic properties of porous material are characterized by
the absorption coefficient or the surface impedance. Therefore measurement are carried
out by use of Kundt’s- or the Impedance Tube method.

An other approach to characterize the acoustical properties could be the determi-
nation of a pair of characteristic values, e.g. the complex characteristic impedance and
the complex wave number. By use of this pair the description of the sound field inside
of the absorber is feasible. So for instance the transmission loss of an absorbing layered
duct or of an absorbing layer as well as the absorption coefficient of porous material in
dependence of the thickness of the layer can be predicted.

Furthermore the measurement of the pair of the complex values allows the esti-
mation of parameters of the porous material, e.g. the porosity or the flow resistance.
These parameters have been estimated by least square fitting using absorber models
as the Delany/Bazely Model, the model of the Homogeneous Media or the Phenom-
enological Model. The results of the estimation have been compared with the results
of direct measurements. Here especially for the one parameter model (Delany/Bazely
Model) a good agreement has been observed.

INTRODUCTION

The acoustical behavior of homogeneous and isotropic porous media can be
described by the use of a pair of characteristic values, e.g. the complex char-



Figure 1: Principle of the Transfer-Matrix-Method.

acteristic impedance Z A and the complex wave number k A. So the prediction
of the absorption coefficient of a layer of porous sound absorbing material for
different angles of incidence is feasible. Moreover the prediction can be carried
out in dependence of the thickness of this layer or for diffuse sound incidence,
as measured in a reverberation room.

There are several acoustical models of porous sound absorbing material,
which allow the calculation of the characteristic values as function of the fre-
quency. Here as input values the absorber parameters, e.g. porosity, tortuosity
or flow resistance, are used.

In some cases the direct measurement of the absorber parameters is very
extensive. So for the prediction of the acoustical behavior of porous asphalt the
tortuosity has been measured by use of an hydro-electrical analogy. Here the
sample of porous asphalt has to be submerge in water. This procedure is very
time consuming and inaccurate. Therefore the estimation of absorber parame-
ters using measured characteristic values was desirable.

MEASUREMENT OF THE CHARACTERISTIC VALUES

For the determination of the pair of the characteristic values the Transfer-Matrix-
Method (TMM) of SON and BOLTON [1] has been employed. This technique
bases on the use of four microphones positioned in a tube, two in front and
two behind of the sample under examination (see Fig. 1). Inside of the tube
the propagation of plane waves is assumed. Thus the tube can be considered
as one-dimensional wave guide consisting of different sections. Therefore the
coefficients Txy of the transfer matrix of the absorber can be calculated by the
sound pressure p and sound velocity v in front and behind of the sample, at x=0
and x=d respectively:[

p
v

]
x=0

=
[

T 11 T 12
T 21 T 22

][
p
v

]
x=d

. (1)

The wave propagation in the absorber sample has to be described by the charac-
teristic values Z A and k A:[

T 11 T 12
T 21 T 22

]
=
[

coskAd jZ A sinkAd
1

Z A
j sinkAd coskAd

]
. (2)



So the complex characteristic wave number and the complex characteristic im-
pedance is:

kA =
1
dA

arccos(T 11) (3)

and

ZA =
(

T 12
T 21

) 1
2

(4)

respectively.
Furthermore the wave propagation in front and behind the sample is pre-

dicted using the characteristic values of air, k0 and Z0. Here for the improvement
of the accuracy of the TMM-technique the wave number has been considered as
complex value. So the damping of the sound waves at higher frequencies was
taken into account.

The arccos-function in Eq. (3) is an analytic and many-valued function.
This can be shown by

arccos(T 11) =− jLn
(

T 11+ j
√

1−T 2
11

)
(5)

and with ρ = T 11+ j
√

1−T 2
11

Ln(ρ) = ln
∣∣∣ρ∣∣∣+ j

(
arg(ρ)+2kπ

)
withk∈Z. (6)

The solution of Eq. (6) lies in the RIEMANN-surface S. S is a surface-like con-
figuration that covers the complex plane with k branches. The branch cuts of
Eq. (3) are at Im{T 11}= 0. Moreover in accordance with BREKHOVSKIKH [2]
for an inhomogeneous plane wave with

p = A 0e− jk A (7)

the imaginary part of k A is Im{k A}> 0. So if

Im{T 11}< 0 (8)

then the solution of the imaginary part of Eq. (6) is

Im{k A}=− 1
dA

Im{arccosT 11}. (9)

Furthermore with (8) and a phase shift of π the real part of k A is

Re{k A}=
1
dA

(2π−Re{arccosT 11}). (10)

By using the technique on several absorbing materials measurements have been
carried out. An example is shown in Fig. 2. Here metallic hollow sphere struc-
ture have been examined. In the lower graph at the left hand side of Fig. 2 an
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Figure 2: Measurement of k A and Z A of different metallic hollow sphere struc-
tures using the Transfer-Matrix-Method. Here ca is the sound speed of an inho-
mogeneous plane wave inside of the structures, Re{k A} = ω/ca. The value
Im{k A} (k”

A) is equivalent to the damping of a propagating inhomogeneous
plane wave inside of the structure.

increase of damping with a decrease of the diameter of the spheres can be ob-
served. The upper graph shows the sound speed of the propagating wave for
different sphere diameter. Here an increase of diameter leads to an increase of
the sound speed. The left hand graphs show the measured results for the charac-
teristic impedance. According to the upper graph on the left hand side a decrease
of the diameter of the spheres causes a decrease of the magnitude of the char-
acteristic impedance. Furthermore the phase of the characteristic impedance is
nearly independent on the sphere diameter.

The measured characteristic values (k A and Z A) have been used for the cal-
culation of the absorption coefficient for diffuse sound incidence. In Fig. 3 the
absorption coefficient measured in the reverberation room according to ISO 354
is shown in comparison to the calculated values obtained by the characteristic
values. The diffraction on the edges has been considered [4] in the calcula-
tion. The graphs of both values show a good agreement at higher frequencies
(f>800 Hz).

ESTIMATION

The estimation of the parameters of an absorber, e.g. the porosity σ or the air
flow resistivity Ξ, can be carried out using the measured ymeas

f and the predicted

ypred
f characteristic values. For that purpose different methods of optimization,

e.g. the ”maximum-likelihood-method” or the ”least square method”, have been
examined. Thereby the best results could be observed by the use of the ”least
square method”. The deviation between the measured characteristic values and
the predicted values shall be ε f = ymeas

f −ypred
f . So the error function defined by



Figure 3: The absorption coefficient for diffuse sound incidence calculated using
the characteristic values (kA, Z A) compared to the measured values (reverbera-
tion room in according to ISO 354) .

the ”least square method” is

J(θ) =
n

∑
f =1

ε f (θ)ε∗f (θ). (11)

Here the parameter f stands for the frequency. The criteria of the optimization
is

minx∈R J(θ). (12)

For the examinations the following models have been used.

• The model of Delany/Bazeley [3]:

kA
k0

= 1+a′′Cα ′′
− ja′Cα ′

, (13)

ZA

Z0
= 1+b′Cβ ′− jb′′Cβ ′′, (14)

with C = Ξ/(ρ0 f ) = 1/E and the parameters e.g. mineral for wool:

a′ = 0,189, α ′ = 0,595,
a′′ = 0,0978, α ′′ = 0,700,
b′ = 0,0571, β ′ = 0,754,
b′′ = 0,087, β ′′ = 0,732.

• The model of the ”Homogeneous Media”[3]:

kA
k0

=

√
κ + jE

/
E0

1+ jE
/

E0

(
τ− j

σ

2πE

)
(15)

ZA

Z0
=

1
σ

√
1+ jE

/
E0

κ + jE
/

E0

(
τ− j

σ

2πE

)
(16)



with
E =

ρ0 f
Ξ

E0 =
ρ0 f0

Ξ
2π f0ϒ = 1 κ = 1.4 (17)

• and the ”Phenomenological Model” [5]:

kA
k0

=
√

τκ

√
1− j

fµ

f

√√√√1−
(

1− 1
κ

)
1

1− j fθ
f

(18)

ZA

Z0
=

1
σ

√
τ

κ

√
1− j fµ

f√
1−
(
1− 1

κ

) 1
1− j fθ

f

(19)

fµ =
Ξσ

2πρ0τ
fθ =

Ξ

2πρ0 Pr
(20)

In the Eq. (13)-(20) the parameter Pr is the ”Prandtl-Number”, ρ0 stands for the
atmospheric pressure of air, τ is the tortuosity and ϒ is the time of relaxation.

The calculation of the function J(θ) requires the prediction of the charac-
teristic values (kA and ZA) on the basis of the aforementioned models. So the
functions ypred

f in Eq. (11) are nonlinear. The solution of (12) can be found by
nonlinear programming. For it several methods have been examined, e.g. the
”Method of Steepest Descent”, the ”Newton-Raphson-Method” and the ”Leven-
berg-Marquardt-Method”. Here it turns out, that the best performance is pro-
vided by the ”Levenberg-Marquardt-Method” (e.g. no instabilities due to sin-
gularities of the ”Hesse-Matrix” because of the estimation of that matrix). The
”Levenberg-Marquardt-Method” uses an iterative process to approach one root
of a function. The specific root that the process locates depends on the initial
chosen value (local convergence). Therefore to reach reliable results a good ini-
tial guess is necessary.

In Fig. (4) the graphs of the function J(θ) are plotted for different models
of the absorber. It can be seen, that for the model of Delany/Bazeley (a) and the
”Phenomenological Model” (c) there is a global minimum only. For this case
the ”Levenberg-Marquardt-Method” will converge. In the plot (b) of Fig. (4) a
singularity at E0 occurs . Here saddle points of the function can be observed.
Thus the calculation of an initial guess is necessary.

This can be carried out by the use of the equations of the model of ”Ho-
mogeneous Media”, Eq. (15) and (16) [3]. By means of

kAZA/(Z0k0) =
1
σ

(
χ− j

σ

2πE

)
, (21)

with the Eq. (17) of the absorber number E and

Im{kAZA/(Z0k0)}=
1

2πE
(22)



(a) Delany/Bazeley (b) Homogeneous Media

(c) Phenomenological Model

Figure 4: The Function J(θ) defined in Eq. (11) shown for the considered mod-
els of the absorber.

the initial guess for the air flow resistivity can be calculated by

Ξ = 2πρ0 f Im{kAZA/(Z0k0)} . (23)

Furthermore the quotient of kA and ZA

kAZ0

ZAk0
= σ

(
κ +E2/E0

2

1+E2
/

E0
2 + j

E
/

E0(1−κ)

1+E2
/

E0
2

)
(24)

and

lim
f→∞

(
κ +E2/E0

2

1+E2
/

E0
2

)
= 1 (25)

allows the prediction of the initial guess of the porosity

σ ≈ Re
{

kA/k0

ZA/Z0

}∣∣∣∣
f→∞

. (26)

As aforementioned the function J(θ) calculated for the ”Phenomenological Model”
has a global minimum. So the iterative process should converge after a finite
number of steps. But for moderate number of the iterative steps initial guesses
for the air flow resistivity Ξ, the porosity σ and the tortuosity τ have been de-
rived:

Ξ =−Im{kAZA/(Z0k0)}2πρ0 f , (27)



σ =
Re
{
(kAZ0)

/
(ZAk0)

}
κ− κ−1

1+
(

Ξ

2πρ0 Pr f

)2

(28)

and
τ = σRe{kAZA/(Z0k0)} . (29)

CONCLUSION

In Tab. 1 the relative error of the estimated values of the air flow resistivity is
plotted. The relative errors have been calculated applying directly measured
values of flow resistivity. Here for the examined structures good results can
be observed by the estimation based on the model of DELANY/BAZELY. The
”Phenomenological Model” was developed for the prediction of the acoustical
behavior of porous roads. This could explain the bad results (∆Ξ/Ξ≈ 10−13%)
of the estimation using this model. One reason of the error observed by the
estimation using the model of the ”Homogeneous Media” (∆Ξ/Ξ ≈ 10−13%)
could be the rough assumption for the prediction of the air flow resistivity.

∆Ξ/Ξ mineral wool ∆Ξ/Ξ open porous foam
DELANY/BAZELY 5.1% 5,9%
Homogeneous Media 13.2% 10.8
Phenomenological Model 13.0% 10.6%

Table 1: The relative error ∆Ξ/Ξ of the estimated value of air flow resistiv-
ity calculated on the base of different absorber models. The relative errors
have been calculated by direct measured values of flow resistivity. These mea-
surements have been carried out in accordance with ISO 9053 (mineral wool
Ξ=6100 Ns/m4, open porous foam Ξ=6070 Ns/m4).
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